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We investigate the effects of an electric current on the domain wall formed inside a cylindrical ferromagnetic
nanopillar as a consequence of the pinning of the magnetization at its ends. We first present the results of
three-dimensional and one-dimensional micromagnetic simulations and show that the system approaches a
stationary equilibrium, where the domain wall is compressed in the direction of the electron flow and rotates
around the nanopillar axis with constant frequency in the microwave frequency range. We obtain the depen-
dence of the rotation frequency on the length of the nanopillar and on the magnitude of the applied current
density. We then introduce a one-dimensional analytical model and find a formula for the rotation frequency in
two current regimes: a low current regime, where the frequency is linearly proportional to the current density
and a high current regime, where the frequency is quadratically proportional to the current density. Good
agreement is found with the results of the simulations. The system may have possible applications as a
nanosized microwave generator, which could operate without external magnetic fields and whose emission
frequency could be controlled by a dc current.
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I. INTRODUCTION

The interaction between electric currents and domain
walls in ferromagnetic nanowires has been the subject of
intensive study in recent years. Experiments have shown that
a spin polarized current can produce a domain-wall move-
ment in the direction of the electron flow.1–4 This effect has
been investigated analytically and numerically.5–7 In a recent
work8 we studied the case where a domain wall occurs inside
a ferromagnetic nanopillar as a consequence of the pinning
of the magnetization at the nanopillar ends. The situation is
similar to the one which occurs for a domain wall in a nano-
wire, with an important difference: The domain wall is
pinned and cannot translate freely along the nanopillar. For
such a system one may expect a compression of the domain
wall, rather than a translation. Micromagnetic simulations
confirm this expectation, showing that the applied current
produces a compression of the domain wall in the direction
of the electron flow. More surprisingly the system reaches a
stationary equilibrium characterized by a rotation of the
compressed domain wall around the nanopillar axis with fre-
quency which is constant in time and lies within the micro-
wave frequency range. This behavior is not found for domain
walls in nanowires and suggests novel technological applica-
tions: Such a system may be used to obtain microwaves
emission from a dc electric current without the need for an
external magnetic field.

In this paper, we study how the rotation frequency de-
pends on the applied current density and on the nanopillar
length. We first present the results of three-dimensional and
one-dimensional micromagnetic simulations. We then intro-
duce an analytical model and find two current regimes: the
low current regime, where the frequency depends linearly on
the current density, and the high current regime, where the
dependence becomes quadratic. We derive approximate for-
mulae for the frequency in these two regimes and find good
agreement with the results from the simulations. The analyti-
cal model supports the numerical results and gives more in-
sight on the physics of the system.

II. SYSTEM

The system under investigation is a ferromagnetic nano-
pillar in the shape of a cylinder, as shown in Fig. 1. The
magnetic moments at the right and left faces of the cylinder
are assumed to be pinned, pointing to the right at the right
face and to the left at the left face. As a consequence, a
domain wall is developed. The system may thus approximate
the situation we considered in a previous work,8 where a
nanopillar made of a magnetically soft material was sand-
wiched between two magnetically hard layers and the pin-
ning was provided by the exchange coupling at the soft-hard
interfaces. In this paper, however, we do not make any as-
sumptions on the origin of the pinning, which can be
achieved in other ways. One example could be a ferromag-
netic body, made by two regions connected through a small
constriction: A domain wall is developed in the constriction,
when the wider regions are magnetized in opposite
directions.9,10

In this work we study how the constrained domain wall
reacts to a uniform and constant electric current flowing
along the axis of the nanopillar. Both the simulations and the
analytical investigations we present are based on a micro-
magnetic model, where the interaction between the spins of
the conduction electrons and the magnetization is taken into
account using the Zhang and Li correction to the Landau-
Lifshitz-Gilbert equation:6

FIG. 1. �Color online� A sketch of the system. The arrows on the
cylinder axis represent the magnetization, pinned in opposite direc-
tions at the nanopillar ends.
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�tM = − �M � H +
�

Ms
M � �tM −

v

Ms
2M � �M � �xM�

−
�v
Ms

M � �xM . �1�

In this equation M is the magnetization, Ms= �M� is the satu-
ration magnetization, H is the effective magnetic field, � is
the gyromagnetic ratio, � is the damping parameter and we
use the notation �t�

�
�t , �x� �

�x . The current density j is ap-
plied in the positive x direction and enters the model through
the parameter v=

Pj�B

eMs�1+�2� , where P is the degree of polariza-
tion of the spin current, �B is the Bohr magneton, e is the
absolute value of the electron charge, �=�ex /�sf is the ratio
between the exchange relaxation time and the spin-flip relax-
ation time. In our model Ms is uniform in space and constant
in time. We can then obtain an explicit form for Eq. �1�:

�tm = − ��m � H − ���m � �m � H� − av�m � �m � �xm�

− āv�m � �xm , �2�

where m=M /Ms and ��=� / �1+�2�, v�=v / �1+�2�. The two
dimensionless coefficients a and ā are a=1+�� and ā=�
−�.

The effective field H receives two main contributions: one
from the exchange interaction, the other from the magneto-
static interaction. The exchange interaction tries to keep
neighboring moments aligned. The exchange field is Hexch

=C�x
2m, where C= 2A

�0Ms
, A is the exchange coupling constant

of the material and �x
2� �2

�x2 . The magnetostatic interaction
mainly tries to align M with the axis of the nanopillar �when
its length is much greater than its radius�, thus reducing the
magnetic surface charges.

The model neither includes the effects of Joule heating
nor the effects of the Oersted field. We discuss these assump-
tions in Sec. VI.

III. THREE-DIMENSIONAL MICROMAGNETIC
SIMULATIONS

For the micromagnetic simulations we use NMAG,11 a fi-
nite element method �FEM� micromagnetic simulation pack-
age. The cylindrical nanopillar is modeled by a three-
dimensional unstructured mesh and first-order FEM is used
to discretize the space. The time evolution of the magnetiza-
tion is calculated using Eq. �2�, except for the sites which lie
on the left and right faces of the nanopillar. For these sites
we assume �tm=0, which corresponds to infinitely strong
pinning on the magnetization. The magnetostatic field is cal-
culated using the hybrid FEM/boundary element method
�BEM� method.12,13 We use material parameters of permal-
loy: Ms=0.8�106 A /m, A=1.3�10−11 A /m and �=0.01.
The damping constant is chosen to be �=0.02. This value
was estimated for permalloy in a previous work.14 The ap-
plied magnetic field is zero for all the simulations presented
in this paper.

We first consider a nanopillar with length L=40 nm and
diameter d=20 nm. The simulation starts from an initial
magnetization configuration, which is obtained by prelimi-

narily relaxing the system with jP=0 and is shown in Fig.
3�a�. A polarized current with density jP= Pj=1011 A /m2 is
then applied at time t=0 along the positive x direction,
meaning that the conduction electrons flow in the opposite
direction.

The simulation shows that the domain wall compresses
along the direction of the electron flow. In Fig. 2 the com-
ponents of the normalized spatially averaged magnetization
�m�= �M� /Ms are plotted as functions of time up to 6.6 ns.
The x component of �m� is initially zero, reflecting the sym-
metry of the initial configuration �Fig. 3�a�� for inversions
x→−x. The current gradually pumps energy into the system
and compresses the domain wall against the left face of the
nanopillar �Fig. 3�b��. In the opposite side of the nanopillar
the magnetization aligns along the positive x axis, resulting
in an increase in �mx�. The compression is accompanied by a
rotation of the whole domain wall around the axis of the
nanopillar, as can be seen clearly by looking at behavior of
the y and z components of �m� in Fig. 2. To obtain the
rotation frequency we express �m� in spherical coordinates
where x is chosen as the polar axis. The frequency is then
calculated numerically as �= 	�t		 /2
, where 	 is the azi-
muth angle. In the case we are considering here, where the
current points in the direction of the positive x axis, the sign
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FIG. 2. �Color online� The evolution of the components of the
average normalized magnetization �m�= �M� /Ms as a function of
time. The nanopillar length is L=40 nm.

FIG. 3. �Color online� The magnetization configuration for the
simulation of Fig. 2 is shown at t=0 ns �a� and t=6.6 ns �b�.
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of �t	 is negative and indicates a left-handed rotation around
the same axis �or equivalently a right-handed rotation around
the negative x axis, which is actually the compression direc-
tion�. The rotation frequency is initially zero and increases
monotonically toward a maximum asymptotical value � f, as
shown in Fig. 4.

To determine � f we let the simulation proceed up to the
point where the variation in time of the frequency becomes
lower than a given threshold. In particular we stop the simu-
lation when �� /�t becomes lower than 0.01 GHz/ns. The
variation �� /�t is calculated with �t=100 ps. The simula-
tion then proceeds up to tf =6.6 ns and the asymptotical fre-
quency is found to be � f 
��t= tf�=11.3 GHz �at 11 ns the
frequency is only 0.004 GHz higher, which corresponds to an
increase of 0.04%�.

The asymptotical dynamics is characterized by a rotation
around the x axis, without deformation of the domain wall.
In such a state, the total energy of the system is constant in
time and hence the energy dissipated by the damping term
must be exactly balanced by the energy pumped in by the
applied current.

Further simulations are performed to find the exact depen-
dence of the frequency on the polarized current density jP
and on the length of the nanopillar L. A different mesh is
considered for each different value of L. All the meshes are
obtained meshing a cylinder with diameter d=20 nm and are
generated such that their simplices have edge lengths lower
than 2.6 nm �on average their edges are around 1.2 nm long�.

The graph in Fig. 5 shows the asymptotic frequency �f
obtained repeating the simulation for jP=1,2 ,4 , . . . ,18,20
�1010 A /m2 and for L=20,25, . . . ,45 nm. The figure
shows that while the frequency changes considerably with
the current density jP, there are small differences between
the curves obtained for different nanopillar lengths L. In par-
ticular the curves for different values of L overlap, showing
that this parameter has different effects for different current
regimes: For currents around 1010 A /m2, the highest rota-
tion frequency is reached by the shortest nanopillar, while for
currents around 2�1011 A /m2 the highest frequency is
reached by the longest nanopillar.

IV. ONE-DIMENSIONAL MICROMAGNETIC
SIMULATIONS

We repeat the simulations discussed in Sec. III for a sim-
plified model, where the nanopillar is represented by a one-
dimensional magnetic string. Such a study has a twofold pur-
pose: On the one hand, it provides data for a comparison
with the three-dimensional model, which allows to better un-
derstand the effects of the nanopillar shape and size. On the
other hand, it gives insight on the limitations of one-
dimensional models, such as the one presented in Sec. V.

For the one-dimensional simulations we use the same ma-
terial parameters and the same procedure as in Sec. III. The
three-dimensional meshes are, however, replaced by one-
dimensional meshes with 0.5 nm spacing between neighbor-
ing nodes. This one-dimensional model neglects the inhomo-
geneities of the magnetization in the plane orthogonal to the
nanopillar axis and—more importantly—it neglects the con-
tribution of the magnetostatic field.

The results of the simulations are shown in Fig. 6. We
study the system for L=20,25, . . . ,60 nm and for the same
values of jP as in Sec. III. The curves for different nanopillar
lengths are more clearly spaced with respect to the three-
dimensional case and show that to a longer nanopillar corre-
sponds a lower rotation frequency. This result is reasonable
for such a one-dimensional system, where the width of the
domain wall is just L: to a smoother change of the magneti-
zation corresponds a reduced spin-transfer torque effect. In
the three-dimensional system, things are different. The mag-
netostatic field pulls the magnetization along the axis of the
nanopillar to reduce the magnetic charges at the surface. This
is an additional pinning effect which keeps the width of the
domain wall from growing for larger values of L. In other
words, in the three-dimensional system the domain-wall
width does not depend on L, if L is large enough. Then the
frequency does not depend on L either.

In Fig. 6 we see that the frequencies for L=20 nm ob-
tained in the one-dimensional model are close to the ones
obtained in the full three-dimensional model. This seems to
suggest that the magnetostatic effects become less important
in shorter nanopillars.
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FIG. 4. The time dependence of the frequency for the rotation of
the domain wall around the x axis for a three-dimensional micro-
magnetic simulation of a nanopillar with L=40 nm.
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FIG. 5. �Color online� The frequency as a function of jP for
different nanopillar lengths L, as obtained from three-dimensional
micromagnetic simulations.
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V. ANALYTICAL MODEL

We investigate the system with a one-dimensional analyti-
cal micromagnetic model. The purpose of such a study is to
support the micromagnetic simulations and to give a better

understanding of the physics of the system. The model does
not include the magnetostatic field and assumes it does not
qualitatively affect the physics of the system. We begin by
writing Eq. �2� in spherical coordinates:

���� = 2 cos ��u��u	 + sin ��u
2	 + ���u

2� − sin � cos ���u	�2� + Va�u� + Vā sin ��u	 , �3a�

���	 sin � = ��2 cos ��u��u	 + sin ��u
2	� − �u

2� + sin � cos ���u	�2 − Vā�u� + Va sin ��u	 . �3b�

Only dimensionless quantities appear in these equations: u
= x

L , ��= ��C
L2 t, V= L

�Cv. We want the magnetization to point to
the left at the left boundary and to the right at the right
boundary:

��u = 0� = 
, ��u = 1� = 0, �4�
which are boundary conditions for our system of differential
equations. When the current is zero, V=0, the equilibrium
�such that 0=����=���	� is obtained for

��u� = 
�1 − u�, 	�u� = const, �5�

as can be seen with a substitution in Eqs. �3a� and �3b�. For
V0, computer simulations show that the system ap-
proaches a stationary equilibrium where the whole magneti-
zation rotates with constant frequency around the axis of the
nanopillar. We then investigate the case where there is no
further compression of the domain wall, while it could still
rotate with constant angular velocity around the x axis:

���� = 0, ���	 = �� = const. �6�

The rotation frequency can be obtained from �� through the
relation �f=

��C
2
L2 	��	.

As a first try to find such a solution we assume �u	=0
and find the corresponding compression profile from Eq.
�3a�:

��u
2� + Va�u� = 0.

Solving this equation we get

�u	 = 0, ��u� = 

e��1−u� − 1

e� − 1
,

where �= Va
� . However this is not a solution of Eqs. �3a� and

�3b�, as can be easily verified with a substitution in the sec-
ond equation of this system:

− �u
2� − Vā�u� � �� sin � .

We conclude that �u	 cannot be neglected. It is then impor-
tant to understand the role of �u	, the torsion of the domain
wall produced as an effect of the flow of the electric current.

We point out that the rotation is a consequence of the
compression of the domain wall and—in this sense—can be
thought to be an indirect effect of the spin-transfer torque.
This can be seen clearly by considering the zero-current
equilibrium configuration �Eq. �5�� and looking at the deriva-
tives of � and 	 with respect to the reduced time ��, when a
current density is immediately applied �this is the situation
which occurs at t=0 in the simulations�. Equation �3a� be-
comes ����=−Va
, which suggests that a compression of the
domain wall is going to take place. Equation �3b� becomes
sin ����	=Vā
. We have found a direct contribution to the
rotation of the domain wall. This contribution, however, is
suppressed by the factor Vā�−5�10−4, which is rather
small for the materials and the range of current densities we
are interested in �j=1011 A /m2, V�5�10−2�. We conclude
that the domain wall initially compresses without significant
rotation and torsion. The compression, however, leads to
nonvanishing values for the term �u

2� and this in turn requires
nonvanishing values for sin ����	, as can be seen by looking
at Eq. �3b�. In summary, the compression of the domain wall
�i.e., �u

2��0� produces a torsion and rotation of the domain
wall �i.e., sin ����	�0�.

We now proceed by rearranging Eqs. �3a� and �3b� and
imposing Eq. �6�:
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FIG. 6. �Color online� The frequency as a function of jP for
different nanopillar lengths L, as obtained from one-dimensional
micromagnetic simulations. The dotted and dashed curves show the
results obtained for the three-dimensional system �Fig. 5� in the
case L=20 and L=45, respectively.
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− � sin � = �u
2� − sin � cos ���u	�2 + V��u� − V sin ��u	 , �7a�

�� sin � = 2 cos ��u��u	 + sin ��u
2	 + V�u� + V� sin ��u	 . �7b�

We have here introduced �=�� / �1+�2�. We note that at the
boundaries of the nanopillar �u=0,1� Eq. �7b� gives

� = 
, 0 → �u���u	 �
V

2
 = 0.

�u� cannot be zero at the boundaries, at least for small cur-
rents, for which we expect the solution to be close to the
zero-current solution �Eq. �5��. We then conclude:

�u		u=0 = +
V

2
, �u		u=1 = −

V

2
.

This result suggests that �u	 should be of the same order of
V. This is an assumption we make, which enables us to pro-
ceed with important approximations. Indeed, for the material
and the geometry we are dealing with, and a current density
around j�1011 A /m2, we have V�0.05. Therefore, the as-
sumption �u	�V implies that the typical torsion of the do-
main wall is, in general, rather small: �	
V
3°. It implies
also that the second and fourth terms on the right-hand side
of Eq. �7a� are of order V2
2.5�10−3. On the other hand,
Eq. �5� suggests that �u��−
 and we expect �u

2� to be on the
same order of magnitude, when the domain wall is com-
pressed. We may then neglect terms of order V2 and terms of
order �V, since typically ��10−2. Then the system �Eqs. �7a�
and �7b�� reduces to

− � sin � = �u
2� , �8a�

�� sin � = 2 cos ��u��u	 + sin ��u
2	 + V�u� . �8b�

We immediately note that all the terms containing � have
disappeared from the system: We are neglecting the nonadia-
batic effects of the spin-transfer torque interaction.

Equation �8a� is the pendulum equation. It could be used
together with the boundary conditions �Eq. �4�� to obtain
��u�, once � is known. However, determining � is not easy.
We can find a constraint on � and � from the second Eq.
�8b�, by multiplying both of its sides by sin �,

�� sin2 � = �u�sin2 ��u	� − V�u cos � . �9�

This equation can be integrated:

�
0

1

sin2 �du = −
2V

��
. �10�

��u� can now be found by searching for the solutions of
pendulum Eq. �8a� which also satisfy Eqs. �4� and �10�. Our
main goal, however, is to find ��V�, rather than finding ��u�
and 	�u�. To do this, we multiply both sides of Eq. �8a� by
�u�:

��u cos � =
1

2
�u��u��2,

which can be integrated, obtaining

� cos � + I =
1

2
��u��2,

where I is a positive �take �=
 /2� integration constant. This
equation gives an expression for �u�:

�u� = − �2�I + � cos �� . �11�

The sign in front of the square root was chosen in order to
satisfy the boundary conditions �Eq. �4��. We can now
change variable of integration in Eq. �10�, obtaining

�
0


 sin2 �d�

�2�I + � cos ��
= −

2V

��
. �12�

A second integral equation can be derived integrating the
identity d� /�u�=du and using the boundary conditions �Eq.
�4��:

�
0


 d�

�2�I + � cos ��
= 1. �13�

I and � can then be found by solving the following system
of equations:

f1��

I
 = −

2V

��
�I ,

f2��

I
 = �I , �14�

where the two functions f1 and f2 are defined in the follow-
ing way:

f1�x� = �
0


 sin2 �d�

�2�1 + x cos ��
,

f2�x� = �
0


 d�

�2�1 + x cos ��
,

and x has to be such that 	x	�1 in order for f2 to exist.
System �14� is difficult to solve in general. Here we consider
two limiting cases: �i� 	 �

I 	�0. Since f1�0�= 


2�2
and f2�0�

= 

�2

, we get I= 
2

2 and �
− 4V
� . The condition 	 �

I 	�0 be-
comes then 	 V

� 	� 
2

8 ; �ii� 	 �

I 	�1. Since f1�1�= 4
3 , �
− 3

2
V
�
�I.

Considering that 	I	
	�	, we finally get �
−� 3
2

V
� �2. More-

over, when x→1, f2�x�→ +�. We then conclude that 	I	

	�	�1 and hence 	 V

� 	�1.
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These results are summarized below:

� = �−
4V

�
for �V

�
� � 1

− �3

2

V

�
2

for �V

�
� � 1.� �15�

The frequency can be deduced easily from the formula � f

= ��C
2
L2 	��	= �C

2
L2 	�	:

� f = �
2




v
�L

for � Lv
��C

� � 1

1

2
�C
�3

2

v
�
2

for � Lv
��C

� � 1.� �16�

Let us now define j0 such that V /�= jP / j0. Then the low
current condition 	 V

� 	�1 becomes 	jP	� j0 and similarly the
high current condition becomes 	jP	� j0 and,

j0 =
2e�

�0�B

��1 + �2�A
L

, �17�

which shows, in particular, that the critical current which
distinguishes between the low current regime and the high
current regime depends on the nanopillar length L.

We note that in the low current regime the frequency does
not depend on the strength of the exchange interaction C
=2A /�0Ms. It depends on the length of the domain wall L
and on the magnitude of the applied current v. On the other
hand, in the high current regime, the frequency does not
depend on L anymore. It depends however on the strength of
the exchange coupling C and depends quadratically on v.

Figure 7 shows the validation of the analytic expressions
for ��V� against the results of the one-dimensional micro-
magnetic simulations of Fig. 6. The graph contains all the
data shown in Fig. 6 plotted in terms of the reduced quanti-
ties V and �. Consequently, all the points obtained for dif-
ferent values of L and jP lie in a single curve. The graph
shows good agreement between theory and simulations, thus
supporting the approximations which were made to get to the
final formulas.

We make a final remark on the different dependence of
the frequency on the applied current in the two regimes.
There are two reasons why an increase in the current may
lead to an increased asymptotic frequency. First, the two
terms through which the spin-transfer torque enters Eq. �1�
share the prefactor v� j: double the current, double the spin-
transfer torque terms and double the effect. The second way
the current may increase the frequency is by reducing the
domain-wall width. A reduced domain-wall width corre-
sponds to an increased value of �xM, which appears in both
the spin-transfer torque terms. In the linear regime, only the
first effect occurs. Indeed, from Eq. �11� we see that �u�

=−�2I�1+ �

I cos �, where �

I 
0 and I= 
2

2 . We then get �u�

−
, which means that, in the low current regime, the
domain-wall shape does not change too much with respect to
the zero-current configuration �Eq. �5��. On the other hand,
in the high current regime, �

I 
−1 and �u�=− 3V
� sin�

2 . �u�
depends on j, through V. This analysis suggests that the low/
high current regimes correspond, respectively, to low/high
domain-wall deformation.

VI. DISCUSSION AND CONCLUSION

We discussed the role of the nanopillar shape in a previ-
ous work:8 Due to the cylindrical shape of the nanopillar, a
rotation of the whole magnetization around the nanopillar
axis does not require to overcome any energy barriers. This
feature is extremely important for the dynamic process we
have studied in this paper, because it allows the current to
gradually transfer energy to the system and store it by com-
pressing the domain wall. An important question to answer is
then: how much does the shape of the nanopillar affect the
dynamics of such systems? We have cross performed simu-
lations for nanopillars with a square section and found very
similar results: For a nanopillar with length L=40 nm and
square section 20�20 nm we chose j=1010 A /m2 and
found a frequency � f 
0.61 GHz, while for the correspond-
ing cylindrical nanopillar � f =0.64 GHz.

Equations �15� and �16� show that the rotation frequency
can be expressed as a function of V /� and ultimately as a
function of jP /�. This means that for a value of � larger by
a factor two, a current density larger by a factor two is re-
quired in order to obtain the same frequency. This consider-
ation indicates that low damping constant is a desirable fea-
ture, when choosing a material for a concrete realization of
the system proposed in this paper. We have chosen permal-
loy, because, besides being a particularly soft magnetic ma-
terial, it has been intensively studied in spin transport experi-
ments in recent years and values between 0.01 and 0.02 have
been estimated14–16 for its damping constant �. We point out
that our choice, �=0.02, is conservative: The value �=0.01
would lead to considerably enhanced current effects and—in
the quadratic regime—would lead to quadrupled frequency.

The electric currents required in spin-transfer torque ex-
perimental studies are often high enough to produce consid-
erable Joule heating and Oersted field. These effects should,
however, be expected to become less and less important as
the system is scaled down. Indeed, smaller systems are able
to dissipate heat more efficiently than big systems, since re-
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duced size corresponds to increased surface/volume ratio.
Similarly, the Oersted field is reduced in smaller nanowires,
being proportional to the total current flowing throughout the
sample. On the other hand, the spin-transfer torque does not
depend on the system size, provided the current density re-
mains constant. These considerations suggest that the nano-
pillar we presented in this paper should be even less affected
than the larger nanowires studied in other works,2,4,16 where
Oersted field and Joule heating were found to be negligible
or unable to limit the effects of spin-transfer torque. Besides
these empirical arguments, we can obtain an estimate of the
Oersted field, using a simple model, where the nanowire is
approximated with an infinitely long cylinder with radius R
and is traversed by a uniform current density j. In this simple
picture, the Oersted field circulates around the nanopillar
axis and has maximum intensity Bmax=�0Rj /2, which is
reached on the surface of the nanopillar. Considering the
extreme case jP=2�1011 A /m2 and P=0.4, we get j=5
�1011 A /m2 and Bmax=0.00314 T. This field does not act
against the rotation of the whole magnetization around the
nanopillar axis, since it is invariant for such transformations.
Moreover, its intensity is so small that we cannot really ex-
pect any relevant deformations of the artificial domain wall
created by the pinning �the demagnetizing field is 2 orders of

magnitude bigger and still produces only moderate profile
adjustments�. We conclude that neglecting the Oersted field
is an appropriate approximation.

In summary, we used micromagnetic simulations to study
the spin-transfer torque effects that occur in a nanopillar
when the magnetization is pinned at its ends. We showed that
the dynamics of such a system is characterized by a station-
ary precession of the whole magnetization of the system
around its axis. We presented both three-dimensional and
one-dimensional computations and studied the asymptotical
precession frequency � f as a function of the polarized current
and of the nanopillar length. We derived an analytical model
which provides further insight into the physics of the system
and shows that there are two current regimes, where the sys-
tem exhibits different dependencies on the applied current.
We found good agreement between the results of the simu-
lations and the theory.
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